

1199 CRM

Non-Functional Requirement

Digital Service Development Division,

Department of Digital Transformation,

GovTech

Table of Contents

1. Development Platform and Technology 3

1.1. Database System 3

1.2. Development Language and Framework 3

1.3. Database Design and Modelling 3

1.4. System Architecture 4

1.5. DevOps Principles and Tools 4

1.6. Hosting and Infrastructure 5

2. Performance Requirements 5

2.1. Load Testing 5

2.2. Performance Metrics 5

3. Integration 6

4. Batch processing 6

5. Usability 6

6. Code Quality Standard (Clean Code) 7

7. Table: Non-Functional Requirements 7

8. Proposed Solution Architecture 9

1. Development Platform and Technology

1.1. Database System

❖ Recommendation: The database for the application is recommended to be

implemented using an open-source database management system.

➢ PostgreSQL

➢ Required latest stable version.

❖ Rationale: These databases are chosen for their reliability, scalability, and

community support. Load testing will ensure they meet performance requirements

under expected loads.

1.2. Development Language and Framework

❖ Development Language Options:

➢ Backend: Python/Java*

➢ Frontend: Next.js

➢ Required latest stable version.

❖ Framework Recommendation: The development framework should be selected

based on a thorough understanding of the system requirements and expected load.

The firm must propose a framework known for its robustness and scalability.

➢ Python Frameworks: Django, FastAPI, Spring boot

❖ Rationale: These frameworks are well-supported, offer extensive libraries, and are

capable of handling enterprise-level applications.

*Python framework if web-based application and Java framework if

software based application.

1.3. Database Design and Modelling

❖ Normalization and Denormalization

➢ Normalization: Start with a normalized schema to eliminate

redundancy and ensure data integrity.

➢ Denormalization: Denormalize selectively to improve read

performance, especially for frequently accessed data.

❖ Indexing

➢ Use indexes to speed up query performance. Be mindful of the

trade-offs, as excessive indexing can slow down write operations.

❖ Partitioning

➢ Partition large tables to improve performance and manageability.

Choose the right partitioning strategy (e.g., range, list, hash) based

on your data access patterns.

❖ Data Modeling Tools

➢ Use data modeling tools to visualize and design the database

schema. Tools like MySQL Workbench, and Microsoft Visio can

be helpful.

❖ Regular Audits and Monitoring

➢ Regularly audit the database for performance issues and security

vulnerabilities. Use monitoring tools to track database performance

and health.

❖ Compliance

➢ Ensure the database design complies with relevant regulations and

standards, such as (General Data Protection Regulation) and

GDPR for data protection.

1.4. System Architecture

❖ Architecture Style:

➢ Monolithic Architecture

■ Segregation: Functional and non-functional modules should be

segregated.

■ Scalability: High-load monolithic applications should be auto-scalable

using orchestration tools or other solutions.

➢ Three-Tier System Architecture

■ UI/UX Tier: Handles the presentation layer

■ Logical Tier: Manages application logic and data processing

■ Database Tier: Handles data storage and management

❖ Rationale: Three-tier architecture ensures clear separation of concerns and

efficient system management.

1.5. DevOps Principles and Tools

❖ Design Principles: The system should be developed using DevOps principles to

ensure continuous integration and delivery.

❖ Tools:

➢ Version Control: Gitlab should be used

➢ Unit Testing: Frameworks specific to the chosen development language

(e.g., JUnit/TestNG for Java, Pytest for Python)

➢ CI/CD: Tools like Jenkins, GitLab CI/CD

➢ Containerization: Docker

■ Every software shall be fully compatible with the containerization

➢ Cluster Management: Kubernetes

➢ Deployment: Docker Compose, Dockerfile

❖ DevOps implementation should be as per the GovTech Standard

(DSOM).

❖ Backup and restore should be as per the Govtech Standard (DSOM).

❖ Rationale: Adopting DevOps principles and tools will enhance development

efficiency, improve code quality, and facilitate automated deployments.

1.6. Hosting and Infrastructure

❖ Infrastructure Provider: The Procuring Agency in the Government data center will

provide the necessary infrastructure for hosting applications, gateways, databases,

and platforms in accordance with the Cloud Division Standard, GovTech.

❖ Rationale: Leveraging government-provided infrastructure ensures compliance

with security policies and reduces costs associated with third-party hosting

services.

2. Performance Requirements

2.1. Load Testing

❖ Requirement: The system should undergo load balancer testing to ensure it can

handle concurrent users effectively.

❖ Rationale: Load testing is essential to identify performance bottlenecks and ensure

the system can scale to meet user demand without degradation in performance.

2.2. Performance Metrics

❖ Concurrent Users: The system should be tested for performance under the

expected number of concurrent users (10 current users *).

* Users are ISC and call-center agent which will keep on increasing as per

increase in center

❖ Response Time: Ensure acceptable response (2 seconds) times under peak load

conditions.

❖ Resource Utilization: Monitor CPU, memory, and network usage during load

testing to ensure optimal resource utilization.

❖ In the event of system downtime: Implement a standalone CRM system on a

local PC, which allows the 1199 call center to continue receiving and logging

calls during a system outage. The local CRM stores interaction data in offline

mode using local memory, ensuring no customer interactions are lost. Once the

live CRM system is back online, the data is automatically synchronised with the

central CRM, ensuring all updates are reflected seamlessly. This approach ensures

business continuity during downtime while maintaining data integrity and

minimizing disruption to service.

3. Integration

❖ Real Time

➢ Real-time interaction between systems may be required to optimize business

processes. This might include bidirectional access through API’s, such as:

➢ Web services

➢ RESTful Services

➢ NDI Integration

➢ Other API interfaces

❖ All API integration should route through National Data Exchange (NDE).

4. Batch processing

❖ Batch data import and export is required in the system. Please provide information on

how your solution allows for these interactions, including:

➢ Acceptable formats (e.g., Excel,CSV, pipe-delimited, etc…)

➢ Scheduling options

➢ Secure transfer capabilities (e.g., SFTP)

5. Usability

❖ Ease of Use:

Prioritize UX/UI Design: Implement a user-friendly interface with intuitive

navigation and clear, consistent workflows. Conduct usability testing to gather

feedback and refine the design to meet users' needs effectively.

❖ Device, Browser, and OS Support:

Multi-Platform Compatibility: Ensure the solution is compatible with major

operating systems, including Windows, macOS, and Linux.

Browser Support: The application should work across all major browsers

(Chrome, Firefox, Safari, Edge), with a focus on the latest stable versions and

support for at least the two most recent versions of each browser.

Device Responsiveness: Optimize the solution for desktop, tablet, and mobile

devices. Use responsive design principles to ensure the application is accessible

and functional on different screen sizes and orientations.

❖ Administrative Access: Minimize the need for administrative rights for end-users to

operate the software. Design the application to function efficiently with standard user

permissions to enhance security and ease of deployment.

6. Code Quality Standard (Clean Code)

Comply with the clean code standard of GovTech Standard Annexure I.

7. Table: Non-Functional Requirements

Sl.N

o

Non-functional

Requirement

Level Reason

1. Scalability Medium The system should handle growth from 5 to 50

concurrent users. While scaling is necessary, the

number of users is relatively small, so medium

priority is given to ensure the system can support

the increase.

2. Availability High High availability is critical, as the call center needs

to be accessible at all times. Downtime can severely

impact customer service, making this a top priority.

3. Reliability High The system needs to be reliable to avoid

interruptions in service, especially during customer

calls. A reliable system is crucial to maintaining

uninterrupted operations.

4. Maintainability High Since the system will likely evolve as more users

join, maintainability is crucial for easy updates, bug

fixes, and overall system health. Ongoing support is

necessary for long-term success.

5. Usability Medium The system should be user-friendly, especially for

agents interacting with it frequently. However,

usability is secondary to ensuring reliability and

availability, so it's given medium priority.

6. Efficiency High Efficiency is important for optimizing agent

productivity and minimizing response time. A call

center system must handle transactions swiftly to

ensure high customer satisfaction.

7. Performance High High performance ensures smooth operation even

when the number of concurrent users increases. The

system should handle real-time customer

interactions without lag or delays.

8. Proposed Solution Architecture

	1.Development Platform and Technology
	1.1.Database System
	1.2.Development Language and Framework
	1.3.Database Design and Modelling
	1.4.System Architecture
	1.5.DevOps Principles and Tools
	1.6.Hosting and Infrastructure

	2.Performance Requirements
	2.1.Load Testing
	2.2.Performance Metrics

	3.Integration
	4.Batch processing
	5.Usability
	6.Code Quality Standard (Clean Code)
	
	7. Table: Non-Functional Requirements
	8. Proposed Solution Architecture

