
Page | 1

NGN Technologies Private Limited

API/DB Usage Guideline

v 1.0

Date: 19/03/2024

Page | 2

DOCUMENT REVISION HISTORY

Revision

No.

Issue Date Change Details Authored by Reviewed by Approved by

1.0 20th Feb, 2024 First Release Khemlal Chhetri

2.0 27th Mar, 2024 Second Release Khemlal Chhetri

Page | 3

Contents
Introduction .. 5

1. Purpose ... 5

2. Overview of the Platform .. 5

2.1. Authentication and ID Management: ... 5

2.2. Consent Management: .. 5

2.3. API Management: ... 6

2.4. Benefits: .. 6

3. Overview of the API Ecosystem... 6

4. API Architecture .. 7

5. Design Principles ... 8

5.1. Authentication patterns .. 8

5.2. API keys for authorization ... 9

6. API Technical Specification .. 9

6.1. API Architecture and Style: ... 9

6.2. Data Formats: .. 10

6.3. HTTP Methods and Status Codes: ... 10

6.4. Authentication and Authorization Mechanisms: .. 10

6.5. Error Handling and Response Codes: .. 10

6.6. Data Validation and Sanitization: .. 10

6.7. Obtaining API Credentials ... 10

6.8. Making Your First Request... 11

6.9. Endpoints, Request Format, Response Format and Methods .. 11

6.10. Data Validation and Sanitization ... 14

6.10.1. Data Validation: ... 14

6.10.2. Data Sanitization: .. 14

6.11. Error codes .. 15

7. API Development Guidelines .. 15

7.1. Naming Conventions: .. 15

7.2. Documentation Standards: ... 15

7.3. Testing and Quality Assurance Procedures: .. 15

8. API Governance ... 16

8.1. API Usage and Policies Guidelines: ... 16

8.2. API Support Channels:... 16

8.3. Monitoring and Logging: ... 16

8.4. Incident Response Plan: .. 16

Page | 4

9. Examples ... 17

9.1. Step-by-Step Guides for Common Use Cases: .. 17

9.2. Code Snippets for Various Programming Languages: ... 17

9.2.1. Node.js .. 17

9.2.2. Python ... 18

10. Glossary of Terms .. 19

Page | 5

Introduction
These guidelines are designed to help developers integrate and interact with our API effectively. Please

read through the following sections to understand how to use the API securely and efficiently.

1. Purpose
This API guideline document serves multiple essential purposes in the development and

integration of an API. Primarily, it aims to provide clarity and understanding by outlining the API's

functionalities, endpoints, parameters, and expected responses. By establishing standards and

best practices, these documents ensure consistency across applications and developers,

facilitating interoperability and ease of maintenance. Through tutorials, code examples, and

practical demonstrations, API guideline documents streamline the integration process for app

vendors, reducing development time and errors.

Additionally, they serve as a reference point for ongoing support, fostering collaboration between

providers and consumers and enabling effective adaptation to changes and updates. Moreover,

these documents often include information about security measures and compliance

requirements, ensuring the secure and regulatory-compliant use of the API. In essence, the

creation of an API guideline document is intended to empower app vendors with the necessary

knowledge and resources for successful API implementation, thereby contributing to the overall

efficiency and effectiveness of the API ecosystem.

2. Overview of the Platform
The Digital Health Platform is a comprehensive system designed to revolutionize healthcare

delivery by leveraging advanced technology and AWS services. AWS provides a scalable, reliable,

and secure infrastructure for running various workloads, from simple web applications to complex

enterprise solutions. Here's an overview of the platform's key components and how it utilizes AWS

services for authentication, ID management, consent management, API management, and data

access control:

2.1. Authentication and ID Management:

- The DHP utilizes AWS Identity and Access Management (IAM) to manage user identities,

access permissions, and authentication mechanisms.

- Enables secure authentication of healthcare providers, patients, and other stakeholders

accessing the platform's resources and services.

- Implements role-based access control (RBAC) to ensure proper user authentication and

authorization.

- Authentication will be used by two types of users, citizens and health professionals. For

citizens, first layer of authentication will be taken care by NDI.

2.2. Consent Management:
- Leverages AWS services to implement robust consent management mechanisms, allowing

patients to control access to their health data and make informed decisions about data

sharing.

- Integrates with AWS Key Management Service (KMS) for encrypting sensitive patient data

and managing encryption keys securely.

Page | 6

2.3. API Management:
- Utilizes AWS API Gateway to manage APIs securely, control access, and enforce usage

policies.

- Enables developers to create, publish, monitor, and secure APIs, facilitating seamless

integration with third-party applications and services.

The main system flow happens through API and DHP will host several API’s for other systems to

function. For the development of API, we are using AWS Lambda, RDS, S3 and CloudWatch

services. By leveraging AWS Lambda, RDS, S3, and CloudWatch, the Digital Health Platform offers

a scalable, reliable, and secure solution for transforming healthcare delivery. These AWS services

enable the platform to handle diverse healthcare workloads, manage patient data effectively, and

ensure operational excellence with proactive monitoring and management capabilities.

2.4. Benefits:
- Enhanced Security: Leveraging AWS security features ensures the confidentiality, integrity,

and availability of patient health data, mitigating security risks and compliance challenges.

- Scalability and Reliability: AWS infrastructure provides scalable and reliable services,

enabling the platform to handle varying workloads, accommodate growth, and maintain

high availability.

- Interoperability: Facilitates seamless integration with existing healthcare systems and

interoperability standards, enabling data exchange and collaboration across different

healthcare organizations and systems.

- Cost Optimization: AWS's pay-as-you-go pricing model allows the platform to optimize costs

by only paying for the resources and services consumed, minimizing upfront investments

and infrastructure overhead.

3. Overview of the API Ecosystem
The DHP API ecosystem serves as the backbone of digital connectivity, facilitating seamless

communication and integration between various systems, applications, and stakeholders. APIs

provide standardized interfaces for accessing data, services, and functionalities, enabling agility,

scalability, and innovation in today's interconnected world. Some of the key components of the

ecosystem are:

- A curated collection of APIs offering a range of functionalities and services, accessible

to developers and consumers.

- The API Gateway acts as the central entry point for external requests, providing security,

routing, and monitoring capabilities.

- The backend services power the APIs by executing business logic, processing data, and

interacting with underlying systems or databases.

- APIs are consumed by developers, applications, and systems to access data, services,

and functionalities.

- APIs facilitate the exchange of data between different systems, ensuring seamless

interoperability and information flow.

Page | 7

- APIs enable rapid development and deployment of new features, promoting agility and

innovation.

- APIs support scalable architectures, accommodating growth and adapting to changing

demands or requirements.

4. API Architecture
The API architecture provides a comprehensive view of the system's API layer, showcasing the

various components and their interactions. Key elements of the architecture include:

- API gateway which acts as the entry point for all external requests. It also enforces

security policies, throttling, and request validation to ensure secure and reliable API

access.

- Lambda function that powers the backend logic and processing of API requests,

enabling serverless execution of code in response to events. It also handle specific API

endpoints and operations, performing tasks such as data validation, authentication, and

business logic execution.

- RDS for storing and managing the application's data, including user information,

preferences, and transactional data. It will be used by Lambda functions to perform

CRUD (Create, Read, Update, Delete) operations and retrieve data for API responses.

- Integrates with IAM (Identity and Access Management) or other authentication services

to validate user credentials and authorize access to protected resources.

- Utilizes CloudWatch or other monitoring tools to track API performance, error rates,

and usage metrics.

Page | 8

5. Design Principles
Security and authentication are paramount in the design of any digital platform, especially in the

healthcare sector where sensitive patient data is involved. Here are some design principles to

ensure robust security and authentication mechanisms in the Digital Health Platform (DHP):

- Least Privilege: Follow the principle of least privilege by granting users only the

minimum level of access rights necessary to perform their roles or tasks within the DHP.

Limit access to sensitive data and functionalities to authorized personnel only.

- Encryption Everywhere: Implement encryption mechanisms to protect data both in

transit and at rest within the DHP. Use strong encryption algorithms and key

management practices to safeguard sensitive information, such as patient health

records and authentication credentials.

- Authentication and Authorization: Users must authenticate using valid credentials

(e.g., API keys, OAuth tokens) before accessing protected API endpoints. Access to

sensitive resources and operations is restricted based on user roles and permissions

defined in the authorization layer.

- Each API endpoint will be thoroughly documented, including its purpose, input

parameters, expected response format, and error handling guidelines.

- Error Handling: APIs should adhere to standard HTTP status codes for indicating the

success or failure of requests (e.g., 200 OK, 404 Not Found, 500 Internal Server Error).

- Implement rate limiting and throttling mechanisms to prevent abuse and ensure fair

usage of API resources.

- Adhere to secure coding practices and conduct regular security assessments, code

reviews, and penetration testing to identify and remediate security vulnerabilities in

DHP components and applications.

5.1. Authentication patterns
DHP uses following authentication patterns:

Bearer Authentication (OAuth 2.0):

- Description: Bearer authentication involves issuing access tokens to clients, which they

include in the Authorization header of API requests. These tokens are typically obtained

through an OAuth 2.0 authorization flow.

- Usage: Bearer authentication is widely used for securing APIs due to its flexibility,

scalability, and support for various grant types (e.g., authorization code, implicit, client

credentials). It provides fine-grained access control and supports token expiration and

refresh mechanisms for improved security.

Page | 9

5.2. API keys for authorization
API keys are typically associated with the Amazon API Gateway service.

- API keys are used to control access to APIs deployed on Amazon API Gateway.

- They provide a simple way to authenticate clients and enforce usage limits on API

endpoints.

- API keys can be generated and managed directly within the Amazon API Gateway console

or through the AWS CLI/API.

- Users can create multiple API keys and associate them with different stages (e.g.,

development, production) of their APIs.

- API keys are typically included in the headers of HTTP requests made to API Gateway

endpoints.

- They are often used in combination with other authentication mechanisms, such as IAM

roles and policies, for added security.

- API keys can be associated with IAM policies to control access to specific API resources

and methods.

- Users can revoke or regenerate API keys as needed to mitigate security risks, such as key

compromise or unauthorized usage.

- IAM policies can grant or restrict permissions based on API key usage, allowing fine-

grained access control.

6. API Technical Specification

6.1. API Architecture and Style:
- The APIs will follow a Representational State Transfer (REST) architecture style, which

emphasizes a stateless client-server communication model and uniform resource

identifiers (URIs) for resource identification.

- RESTful principles will guide the design of API endpoints, HTTP methods, and resource

representations for accessing and manipulating healthcare data.

Page | 10

6.2. Data Formats:
- Data exchanged between clients and the API will primarily use JavaScript Object Notation

(JSON) format due to its lightweight and human-readable nature.

- JSON will be used for both request payloads and response bodies, enabling efficient data

transmission and consumption across different platforms and devices.

6.3. HTTP Methods and Status Codes:
- The APIs will support standard HTTP methods, including GET, POST, PUT, PATCH, and

DELETE, for performing CRUD (Create, Read, Update, Delete) operations on healthcare

data.

- HTTP status codes will be used to indicate the outcome of API requests, such as success

(2xx), client errors (4xx), and server errors (5xx), ensuring clear communication between

clients and servers.

6.4. Authentication and Authorization Mechanisms:
- API authentication will be implemented using JSON Web Tokens (JWT) with OAuth 2.0

authorization framework.

- Clients will obtain JWT tokens by authenticating with the Authentication Service and

include them in the Authorization header of API requests.

- Authorization will be enforced based on the roles and permissions associated with the

authenticated user, allowing granular access control to API resources.

6.5. Error Handling and Response Codes:
- The APIs will adhere to consistent error handling practices, returning appropriate HTTP

status codes and error messages in response to invalid requests or server-side errors.

- Common error scenarios, such as validation failures, unauthorized access, or resource not

found, will be properly documented and communicated to clients for troubleshooting

purposes.

6.6. Data Validation and Sanitization:
- Input data received from clients will undergo validation and sanitization to prevent

injection attacks, data corruption, or security vulnerabilities.

- Validation rules will be applied to request payloads to ensure data integrity, format

compliance, and adherence to business rules before processing the requests.

6.7. Obtaining API Credentials
To use our API, you'll need to obtain API credentials (API key, tokens, etc.). First you need to

obtain the token generation url to access other API’s. The token generation URL is listed below:

URL = http://localhost:8080/getToken

Page | 11

6.8. Making Your First Request
Make a simple API request to ensure your setup is correct. Here's an example using

[curl](http://localhost:8080/getToken/):

Bash example:

curl -X GET "http://localhost:8080/validateUser" -H "Authorization: Bearer

YOUR_ACCESS_TOKEN"

6.9. Endpoints, Request Format, Response Format and Methods
- All the clients need to send requests in valid JSON format.

- Each API endpoint will have specific HTTP method. This will be found on the swagger what

kind of methos is used. We normally use (GET, POST, PUT, DELETE).

- The endpoint URL defined includes path parameters, query parameters, or request body,

as applicable. This will also be made available in swagger.

Sl
No

 API Name Endpoint Method Request Format Response Format Authentication

1 Token
generation

/generate-token GET None JSON
{
“token”:”string”
}

JWT

2 Authentication
Function
(Common to
citizen and
professionals)

/auth/validate GET JSON
{
“userid”:“string”
}

JSON
{
“usertype”:”string”
}

API Gateway

3 Authentication
for
professionals

/auth/login GET {
“userid”:“string”,
“password”:“string”
}

{
“status”:“string”
}

4 Authentication
for citizens
using NDI

/auth/citizenlogin GET {
“secret”:“string”
}

{
“value”:“string”
}
Value received is the
CID

5 ID
Management
Save

/idm/saveid POST {
“dhpId”:“string”,
“hbId”:“ string”
}

{
“saveStatus”:“string”
}
Either success or
failure

6 Edit and
update
information
for ID
Management

/idm/update POST {
“Id”:“string”
}

{
“saveStatus”:“string”
}
Either success or
failure

7 Display ID
management
information

/idm/getAllById GET {
“Id”:“string”
}

{
“dhpId”:“string”,
“nid”:“string”,

Page | 12

“hbId”:“string”,
“bbId”:“string”,
“uhId”:“string”,
“regDate”:“date”,
“updDate”:“date”,
“regApp”:“string”
}

8 Error handling /error GET {
“errorcode”:“string”
}

{
“response”:“string”
}

9 ID & Login
Validation

/validateID GET {
“dhpID”:“string”
}

{
“status”:“string”
}

10 Register
Consent

/consent/register
(First time register)

POST {
“dhpID”:“string”,
“category”:“string”,
“consent”:“boolean”,
“date”:“date”
}

{
“status”:“string”,
}

11 Edit & Update
Consent

/consent/update

POST {
“dhpID”:“string”,
“category”:“string”,
“consent”:“boolean”,
“date”:“date”
}

{
“status”:“string”,
}

12 Read Consent /consent/getAll GET {
“dhpID”:“string”
}

{
“dhpId”:“string”,
“category”:“string”,
“healthBank”:“string”,
“bioBank”:“string”,
“hhBank”:“string”,
“medBank”:“string”,
“regDate”:“date”,
“updDate”:“date”,
“regApp”:“string”
}

13 Register
Assessment
Result

/assessment/save POST {
“hbID”:“string”,
“question”:“int”,
“answer”:“string”,
“assessmentDate”:
“date”,
“regDate”:“date”,
“updatedDate”:
“date”,
“regApp”:“string”,
“sequence”:“int”,
}

{
“status”:“string”
}

Page | 13

14 Update
Assessment
Result

/assessment/
update

POST {
“hbID”:“string”,
“question”:“int”,
“answer”:“string”,
“assessmentDate”:
“date”,
“regDate”:“date”,
“updatedDate”:
“date”,
“regApp”:“string”,
“sequence”:“int”,
}

{
“status”:“string”
}

15 Delete
Assessment
Result

/assessment/del POST {
“hbID”:“string”
}

{
“status”:“string”
}

16 Read
Assessment
Result

/assessment/getAll GET {
“hbID”:“string”
}

{
“hbID”:“string”,
“question”:“int”,
“answer”:“string”,
“assessmentDate”:
“date”,
“regDate”:“date”,
“updatedDate”:
“date”,
“regApp”:“string”,
“sequence”:“int”,
}

17 Register
Examination
Result

/exam/save POST {
“hbID”:“string”,
“data”:“int”,
“measureDate”:
“date”,
“regDate”:“date”,
“updatedDate”:
“date”,
“regApp”:“string”,
“sequence”:“int”,
}

{
“status”:“string”
}

18 Update
Examination
Result

/exam/update POST {
“hbID”:“string”,
“data”:“int”,
“measureDate”:
“date”,
“regDate”:“date”,
“updatedDate”:
“date”,
“regApp”:“string”,
“sequence”:“int”,
}

{
“status”:“string”
}

Page | 14

19 Delete
Examination
Result

/exam/del POST {
“hbID”:“string”
}

{
“status”:“string”
}

20 Read
Examination
Result

/exam/getAllByID GET {
“hbID”:“string”
}

{
“hbID”:“string”,
“data”:“int”,
“measureDate”:
“date”,
“regDate”:“date”,
“updatedDate”:
“date”,
“regApp”:“string”,
“sequence”:“int”,
}

21 File Format
Conversion

/file/convert GET {
“data”:“string”
}

{
“response”:“string”
}

6.10. Data Validation and Sanitization

Below are the data validation and sanitization guidelines:

6.10.1. Data Validation:
- dhpID: Ensure that the `dhpID` parameter is a non-empty string and follows any specific

format requirements (e.g., alphanumeric characters).

- category: Validate that the `category` parameter is a non-empty string and matches

predefined categories (if applicable).

- healthBank, bioBank, hhBank, medBank: Validate each of these fields to ensure they are

valid strings and meet any length or format requirements.

- regDate, updDate: Validate that the `regDate` and ̀ updDate` parameters are in the correct

date format (e.g., YYYY-MM-DD) and represent valid dates.

- regApp: Ensure that the `regApp` parameter is a non-empty string and meets any specific

requirements (e.g., maximum length).

6.10.2. Data Sanitization:
- Input Sanitization: Apply input sanitization techniques to mitigate the risk of injection

attacks (e.g., SQL injection, XSS). This may involve removing or encoding special characters

from user-supplied data before processing.

- Date Sanitization: For date parameters (`regDate`, `updDate`), ensure that any input

outside the expected date range or with invalid characters is sanitized or rejected.

- String Sanitization: Apply string sanitization methods to remove or escape potentially

dangerous characters from string inputs to prevent unintended behavior.

Page | 15

6.11. Error codes
Error Code Description

400 Bad Request - Malformed syntax or invalid request message.

401 Unauthorized - Request requires user authentication.

403 Forbidden - Server refuses to authorize the request.

404 Not Found - Requested resource is not available on the server.

405 Method Not Allowed - The specified method is not allowed.

408 Request Timeout - Server timed out waiting for the request.

429 Too Many Requests - User has sent too many requests in a given
time.

500 Internal Server Error - Something has gone wrong on the server.

502 Bad Gateway - Invalid response received from the upstream server.

503 Service Unavailable - Server is currently unable to handle requests.

7. API Development Guidelines

7.1. Naming Conventions:
- Resources: Use plural nouns to represent resources. Use camelCase for multi-word

resource names.

Example: `/consents`

- Endpoints: Use descriptive verbs to represent actions. Use lowercase for endpoint paths.

Example: `/consents/getAll`

- Parameters: Use camelCase for query parameters and path parameters.

Example: `dhpId`

- Response Attributes: Use camelCase for attribute names in response bodies.

Example: `regDate`

7.2. Documentation Standards:
- API Description: Provide a brief overview of the API's purpose and functionality, including

any authentication requirements or usage limitations.

- Endpoint Documentation: Document each endpoint with its URL path, supported HTTP

methods, request/response formats, and example usage scenarios.

- Parameter Documentation: Document each parameter with its name, data type,

description, and whether it's required or optional.

- Authentication and Authorization: Document the authentication mechanism (e.g., JWT

tokens) and any authorization rules (e.g., role-based access control) enforced by the API.

7.3. Testing and Quality Assurance Procedures:
- Unit Testing: Write unit tests using testing frameworks like JUnit or pytest to validate the

functionality of each API endpoint.

Page | 16

- Integration Testing: Conduct integration tests to verify the interaction between API

endpoints and external dependencies (e.g., databases, third-party services).

- Quality Assurance: Implement code review processes to ensure adherence to coding

standards, security best practices, and performance optimization techniques.

8. API Governance

8.1. API Usage and Policies Guidelines:
- Define clear policies and guidelines for API usage, including rate limits, authentication

mechanisms, data usage policies, and compliance requirements.

- Enforce standards for API naming conventions, request/response formats, error handling,

and versioning to ensure consistency and interoperability across APIs.

- Provide documentation and examples to illustrate best practices and usage guidelines for

API consumers.

- Regularly review and update API policies to accommodate changes in business

requirements, security standards, and regulatory compliance.

8.2. API Support Channels:
- Establish dedicated support channels for API consumers to seek assistance, report issues,

and provide feedback.

- Offer multiple channels for support, such as email support, community forums, knowledge

bases, and developer portals.

- Assign qualified support staff to respond promptly to inquiries, troubleshoot technical

issues, and escalate critical issues as needed.

- Provide self-service resources, including FAQs, troubleshooting guides, and API

documentation, to empower users to resolve common issues independently.

8.3. Monitoring and Logging:
- Implement robust monitoring and logging mechanisms to track API usage, performance

metrics, and error rates in real-time.

- Utilize monitoring tools like AWS CloudWatch, Amazon CloudWatch Logs, and AWS X-Ray

to collect and analyze API metrics, logs, and traces.

- Set up alerts and notifications to proactively detect and respond to anomalies, service

disruptions, and performance degradation.

- Use log aggregation and analysis tools to identify trends, troubleshoot issues, and optimize

API performance and reliability.

8.4. Incident Response Plan:
- Develop a comprehensive incident response plan to address potential API disruptions,

security breaches, and service outages.

- Define clear roles and responsibilities for incident response team members, including

communication protocols, escalation procedures, and incident severity levels.

- Conduct regular tabletop exercises and simulations to test the effectiveness of the incident

response plan and ensure readiness to handle emergencies.

Page | 17

- Establish incident response playbooks with predefined steps and procedures for mitigating

common API-related incidents, such as DDoS attacks, data breaches, and system failures.

9. Examples

9.1. Step-by-Step Guides for Common Use Cases:
Creating a New User Account:

- Step 1: Navigate to the registration endpoint `/users/register`.

- Step 2: Provide required user information such as username, email, and password in the

request body.

- Step 3: Send a POST request to the registration endpoint to create a new user account.

- Step 4: Receive a success response with the newly created user's details.

Fetching User Profile Information:

- Step 1: Authenticate the user by obtaining an access token using the `/auth/login`

endpoint.

- Step 2: Use the access token to authorize requests to the `/users/profile` endpoint.

- Step 3: Send a GET request to the profile endpoint to retrieve the user's profile

information.

- Step 4: Receive a success response with the user's profile data.

9.2. Code Snippets for Various Programming Languages:

9.2.1. Node.js

Page | 18

9.2.2. Python

Page | 19

10. Glossary of Terms
DHP Digital Health Platform

NDI National Digital Identity

API Application Programming Interface

AWS Amazon Web Services

IAM Identity and Access Management

RBAC Role Based Access Control

KMS Key Management Service

RDS Relational Database Service

S3 Storage Bucket Service

CRUD Create, Read, Update, Delete

CLI Command Line Interface

REST Representational State Transfer

JSON JavaScript Object Notation

HTTP Hyper Text Transfer Protocol

JWT JSON Web Tokens

